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Mean-flow and turbulent characteristics of free and 
impinging jet flaws 
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(Received 27 June 1983 and in revised form 15 April 1984) 

Numerical solutions are presented of the governing equations for three plane flows : 
the laminar free jet; the developing turbulent free jet ; and the turbulent impinging 
jet for different ratios h/b of the nozzle height h above the plate to the nozzle 
width b. 

The accuracy of the numerical procedure is demonstrated by comparing the 
solution of the Navier-Stokes equations for the laminar-flow case with their 
analytical boundary-layer solution. For turbulent flows these equations are solved 
after Reynolds averaging. Closure is achieved by a two-equation turbulence model 
in conjunction with three alternative algebraic expressions for the turbulent stresses. 
The capabilities of such an approach are illustrated by the extent and consistency 
of the predictions and the satisfactory agreement of the measurable quantities with 
the more reliable experimental data in the literature. The limitations of the models 
employed, evident from their lack of universality, are discussed in the light of their 
derivation from more complex ‘ single-point ’ closures. 

Features of the flows studied of interest include: the near-nozzle behaviour of a 
‘finite ’ laminar free jet ; the potential core and transition regions of a turbulent free 
jet, along with the fully developed similarity profiles; the enhanced heat-transfer 
characteristics of impinging jet flows; and the similarity of the developing wall jet 
after impingement to  the standard wall-jet configuration. 

1. Introduction 
I n  recent years it has become increasingly viable to tackle turbulent-flow problems 

in engineering by solving the complete time-averaged Navier-Stokes equations in 
conjunction with a turbulence closure. This study formed part of a wider task of 
applying these numerical modelling techniques to fluid-flow problems in chemical 
engineering. Of particular interest is impingement drying (Looney 1982), a common 
industrial operation involving the drying of such diverse products as paper, textiles, 
peat pots and on moving beds by the impingement of hot air issuing from rows of 
plane nozzles. This paper concentrates on the hydrodynamic predictions of some of 
the more relevant flows involved in the operation. 

The solution of the plane laminar free jet is obtained primarily to  examine the 
accuracy of the numerical method. This is achieved by comparing the developed jet 
solution with the analytical boundary-layer solution of Schlichting (1933) and 
Bickley (1939), which has been confirmed experimentally by Andrade (1939) for jet 
Reynolds numbers Rei up to 30. In  addition, the predictions also illustrate t h e  

t Present address : Mechanical Engineering Department, Imperial College of Science and 
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near-nozzle flow resulting from real ‘finite ’ inlet conditions. The plane turbulent free 
jet is studied primarily to provide the accurate specification of the upstream 
boundary conditions for the impivging-jet case, i.e. the potential core and undeveloped 
flow regions are of interest. Previous studies have been confined to the fully developed 
flow region. The solution also provides an opportunity of testing the performance of 
the most suitable contemporary turbulence models in predicting this well-documented 
flow, while confirming the earlier findings of turbulence-model developers regarding 
the fully developed flow predictions. Finally the plane turbulent impinging jet is 
solved for a wide range of h/b ratios and Reynolds numbers in order to study their 
effect on the important augmented heat-transfer characteristics near the stagnation 
point. 

The time-averaged continuity and Navier-Stokes equations are solved for steady 
turbulent flow of an incompressible fluid. Based on conclusions drawn from a study 
of previous numerical work (see $ 3  and Looney 1982), the turbulence models 
considered are confined to those involving two additional partial differential equations. 
Of these, the standard k-e turbulence model of Jones & Launder (1972) is selected 
owing to its success in handling a wide variety of free and wall-bounded flows with 
and without recirculation (Launder & Spalding 1974). I n  addition modifications to 
the k-e model in the form of Rodi’s (1972) suggestions for modelling both strong and 
weak shear flows and Ljuboja & Rodi’s (1979) algebraic stress model for wall-bounded 
flows are selected owing to their previous success in predicting a self-similar free jet 
and wall jet respectively. The use of the word ‘prediction’ in the context of the 
turbulence-model closures selected and the turbulent free-jet solution requires some 
clarification, as this flow was included in the group of test cases from which the 
various turbulence model constants have been optimized (see $4.1). However, bearing 
in mind that it was the fully developed free jet that  was involved, that  the only axial 
variation considered was its spreading rate and the fact that  24 flows were involved 
in the case of the standard k-e model (Launder et al. 1972) and five flows in the ease 
of Rodi’s (1972) model, it  appears justified. 

The finite-volume method employed in the solution of the equations is in many 
respects conventional : the elliptic equations being formulated in their primitive- 
variable form, on a non-uniform Cartesian mesh and solved for iteratively. The 
procedure, termed CHAMPION B/E/FIX (Pun & Spalding 1976), was selected owing 
to the partially parabolic nature of the flows studied, being a ‘line-by-line ’ iterative 
procedure solving the equations sequentially along each ‘ staggered ’ grid-line before 
proceeding downstream. It handles the coupling of the continuity and momentum 
equations by solving for pressure via the SIMPLE (semi-implicit method for pressure 
linked equations) algorithm of Patankar & Spalding (1972). Details of the efficiency 
of the numerical procedure in handling the flows involved are provided, along with 
some preliminary results, by Looney & Walsh (1982). 

2. Experimental work 
2.1. The free jet 

The plane turbulent free jet has been investigated experimentally a t  various levels 
as illustrated in table 1 .  Included are details of the nozzle width b and aspect ratio s, 
the jet Reynolds number Rej = pU, b/ ,u (U ,  = inlet velocity) and the distance down- 
stream over which measurements were taken, along with a list of the mean-flow 
and turbulence quantities measured. 

Much of the experimental data is in conflict in certain areas, owing to  both the 
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Mean-flow Turbulence 
Nozzle Range quantities quantities 

Experimenter dimensions X l b  Rej measured measured 

Forthmann (1934) b = 3 0 m m  25 7 . 0 ~  lo4 ti - 

Miller & b = 12.7 mm 40 2 . 0 ~ 1 0 4  U ,  p U2 

Van der Hegge b = 5 and 10 mm 40 1.33 x lo4 17, V u2, v2> uv 

_ s = 12.7 

_ -  Comings (1957) s = 40 

Zijnen (1958) s = 20 
Bradbury (1965) b = 9.53 mm 

s = 48 
U ,  = 0.16 U ,  
b = 12.7 mm 
s = 132 

Heskestad (1965) 

Pate1 (1970) b = 7 m m  

Mih & b = 1.73mm 

Robins (1973) b = 3.2-19 mm 
s = 128-21 

Gutmark & b = l 3 m m  

s =  114 

Hoopes (1972) s = 59 

Wygnanski (1976) s = 38.5 

Hussain & b = 31.8 mm 

Antonia, Satyaprakash & b = 31.8 mm 
Clark (1977) s = 44 

Hussain (1980) s = 44 

70 3 . 0 ~  lo4 u, V,P  

160 4.7 x 103- 17 
3.7 x 104 

152 3 . 5 ~  104 U 

140-300 1.77 x lo4- IT 
3.14 x 104 

7.5 x 104 
100 7 . 0 ~  lo3- 11, v , p  

120 3 . o ~  104 U? v 

40 3 . 2 6 ~  lo4 and U , p  

2.04 x lo4 and U,, 
8.14 x 104 

4.28 x 104 
160 

_ - -  
u2, v 2 ,  W2? uv3 1,  A,, 
k-balance 

U ,  V = mean velocities, u, u, w = fluctuating velocities, p = static pressure, k = turbulent kinetic 
energy, E = turbulent-energy dissipation rate, I = mixing length, 2 = normal stresses, UV = shear stress, 
As = microscales, $-balance = lateral variation of individual terms of $-equation, $,, balance = axial 
variation of individual terms of $,, equation. 

TABLE 1. Experimental data for plane turbulent free jet 

variety of inlet and boundary conditions employed, many of which are inadequately 
reported, and the level of experimental error inherent in hot-wire anemometry , by 
which the majority of the experimental data is obtained. The former problem is well 
illustrated by the findings of Kotsovinos ( 1976), who correlated existing mean-velocity 
data and reported a nonlinear growth rate, i.e. a spreading rate (dsldx) which varied 
from 0.0913 at x < 30b to 0.14 a t  x > 300b (6 E half-width = y a t  U = iU,,, where 
UcL = centreline jet velocity). However, Bradshaw (1977) showed that the increased 
spreading rate may be due to the fall in the mean velocity and turbulence intensity 
of the jet to the same order of magnitude as that  of the fluctuating draughts (of 
sufficiently long wavelength for the jet to be translated sideways) in the room caused 
by the recirculation of the fluid. He showed that the reported increase in spreading 
rate corresponds to a background turbulence level of 0.5 yo of the inlet velocity. The 
latter problem was quantified by Robins (1973), who estimated an experimental error 
of 8 yo in his fluctuating-velocity measurements and demonstrated that much larger 
errors can occur in measurements near the edge of the jet (y > 1.56), where 
turbulence intensities are high. 

Rodi (1975), in his review of experimental data for free jets, assessed Bradbury’s 
(1965), Heskestad’s (1965), Patel’s (1970), Gutmark & Wygnanski’s (1976) and 
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Robins’ (1973) data. Based on a comparison of measured and calculated (from 
mean-velocity measurements) shear stress m, he found, not surprisingly, that 
Bradbury’s data is the most consistent, since the existence of a slow parallel stream 
( U ,  = 0.16U0) reduced the turbulence intensities a t  the edge of the jet. He also quotes 
a downstream spreading-rate figure of 0.11, similar to that found by Heskestad. 
However, considering the findings of Bradshaw (1977) mentioned above and that 
Newman (1967), in his review of experiments up to 1965, recommends a figure of 
0 . 1 0 4 k 2 ~ 0  which is in agreement with the later findings of Robins (1973), 0.103, 
Gutmark & Wygnanski (1976), 0.1, and Hussain & Clark (1977), 0.1, this figure would 
appear to be too high. 

2.2. The impinging jet 

Those workers who have carried out flow and heat-transfer measurements in plane 
turbulent impinging jets are listed in table 2. Included are details of the nozzle width, 
the nozzle aspect ratio, the jet Reynolds number, the height h of the nozzle above 
a flat plate, and the distance along the plate over which measurements were taken, 
along with a list of the flow and heat-transfer quantities measured. 

Few complete studies of mean-flow and turbulence characteristics have been 
undertaken. Russell & Hatton’s (1972) and Gutmark, Wolfshtein & Wygnanski’s 
(1978) data represent the only available fluctuating-velocity measurements. However, 
the former employed a very low nozzle aspect (length/width) ratio of 6 and reported 
a high initial turbulence intensity due to inadequate plenum-chamber design ; the 
latter study was confined to centreline measurements at a nozzle height of one hundred 
slot widths. In addition, Beltaos & Rajaratnam’s (1973) mean-flow data and Gardon 
& Akfirat’s (1965, 1966) local heat-transfer-coefficient data represent the only 
extensive measurements for different h/b  ratios undertaken. 

3. Previous numerical modelling work 
3.1. The freejet 

Owing to their high turbulence intensities, the prediction of turbulent free jets has 
been employed as a crucial test case in the development of many turbulence models. 
However, in almost all cases the boundary-layer equations, which neglect the 
normal-stress terms, were solved in stream-function-vorticity form using iterative 
techniques (e.g. Patankar & Spalding 1967) which march forward from in most cases 
arbitrary initial conditions until profiles reach similarity. Thus only downstream 
spreading rate and U ,  k ,  UV and k-balance (see (6)) similarity profiles were reported. 

Rodi & Spalding (1970), employing a version of Rotta’s (1969) k-El turbulence 
model, predicted a downstream spreading rate of 0.108 and turbulence quantities 
which were underpredicted by up to 5 yo compared with Bradbury’s experimental 
data. Later, Rodi (1972) repeated the calculations using an empirical function for the 
turbulent viscosity constant (see (8)) and optimized all constants to predict flows with 
either strong or weak strain. This resulted in a spreading rate of 0.114 and 
overprediction of the k and m profiles in the outer part of the jet by up to 10 Yo. 
Launder et al. (1972) confirmed that Rodi’s (1972) suggestions, applied to the k-e 
model, improved the prediction of the linear relationship (1  - UcL/U, , - z  versus x/b 
for a plane free jet in a moving stream. Launder & Morse (1977) found that the 
Reynolds-stress closure of Launder, Reece & Rodi (1975) gave too high a prediction 
(0.123) for the spreading rate of the plane jet. 



E
x

p
er

im
en

te
r 

S
ch

au
er

 &
 E

us
ti

s 
(1

96
3)

 
K

u
m

ad
a 

&
 

M
ab

uc
hi

 (
19

70
) 

R
us

se
ll

 &
 

H
at

to
n

 (
19

72
) 

B
el

ta
os

 &
 

R
aj

ar
at

n
am

 (
19

73
) 

B
ow

er
, 

K
o

ta
n

sk
y

 &
 

H
of

fm
an

 (
19

77
) 

G
u

tm
ar

k
, W

ol
fs

ht
ei

n 
&

 
W

yg
na

ns
ki

 (
19

78
) 

B
ai

ne
s 

&
 

K
ef

fe
r 

(1
98

0)
 

G
ar

do
n 

&
 

A
kf

ir
at

 (
19

66
) 

G
ar

do
n 

&
 

A
kf

ir
at

 (
19

65
) 

V
an

 H
ei

ni
ng

en
, M

uj
um

da
r 

&
 

D
ou

gl
as

 (
19

77
) 

H
ar

d
is

ty
 (

19
77

) 

N
oz

zl
e 

di
m

en
si

on
s 

-
 

b 
=

 5
 a

n
d

 1
0 

m
m

 
s 
=

 6
0 

an
d

 3
0 

b 
=

 2
5.

4 
m

m
 

s
=

6
 

b 
=

 2
.2

4 
m

m
 

s 
=

 6
5

 
b 
=

 3
8.

1 
m

m
 

s 
=

 4
0 

b
=

1
3

m
m

 
s 
=

 3
8.

5 

b 
=

 1
.9

 m
m

 
s 
=

 2
63

 
b 

=
 1

.5
9-

6.
35

 m
m

 
s 
=

 9
ti

-2
4 

b 
=

 3
.2

 m
m

 
s 
=

 4
8 

b 
=

 6
.2

 a
n

d
 1

4.
1 

m
m

 

b 
=

 3
.0

 m
m

 

R
ej

 

4
.3

 x
 1

04
 

7 
x 

lO
”2

.8
 

x 
lo

4
 

1.
25

 x 
lo

5 

5.
27

 x
 1

03
-9

.4
 x

 lo
3 

1.
3 

x 
lo

5 a
n

d
 3

.8
 x

 l
o

5
 

3
 x

 1
04

 

7 
x 

10
3 

45
0-

5 
x 

10
4 

1.
1 

x 
10

4 

1.
37

 x
 1

0
4

4
.9

1
 x 

lo
4

 

3 
x 

10
3-

1 
x 

10
4 

h b 40
 

2
4

0
 

31
.5

 

-
 14
.0

4-
67

.5
 

1
4

 

10
0 

2-
20

 

0.
33

-8
0 

2-
32

 

2.
6 

an
d

 6
.0

 

2-
16

 

W
id

th
 

Y h 0.
3 

10
-0

.5
 

0.
31

75
 

7.
5 

4-
 1

 

0
 

-
 

7.
5-

0.
75

 

10
-0

.7
5 

10
-0

.7
5 

8
.5

 

7.
5-

1.
0 

F
lo

w
 a

n
d

 
h

ea
t-

tr
an

sf
er

 
q

u
an

ti
ti

es
 

m
ea

su
re

d 

%
 

* m m 

T
A

B
L

E
 2.
 E

x
p

er
im

en
ta

l d
at

a 
fo

r 
p

la
n

e 
tu

rb
u

le
n

t 
im

pi
ng

in
g 

je
t.

 p
, 

= 
w

al
l 

st
at

ic
 p

re
ss

ur
e,

 7, 
= 

w
al

l 
sh

ea
r 

st
re

ss
, 

V
, 

=
 m

ax
im

u
m

 v
el

oc
it

y 
pa

ra
ll

el
 t

o
 t

h
e 

p
la

te
, 

h
, =

 lo
ca

l 
w

al
l 

h
ea

t-
tr

an
sf

er
 c

oe
ff

ic
ie

nt
, 

h
a,

 s
z 

av
er

ag
e 

h
,,

 N
u
 =

 lo
ca

l 
N

us
se

lt
 n

u
m

b
er

 =
 h

, b
/k

,, 
k,
 =

 th
er

m
al

 c
o

n
d

u
ct

iv
it

y
 

of
 t

h
e 

fl
ui

d.
 



402 M .  K .  Looney and J .  J .  Walsh 

3.2. The impinging jet 

The most detailed study on plane impinging jets was completed by Wolfshtein (1967). 
He employed Prandtl’s (1945) one-equation model and later a form of Kolmogorov’s 
(1942) k- f2  model (Wolfshtein 1969), and solved the equations in stream-function- 
vorticity form for the impingement region only. His inlet conditions included 
similarity stream-function and vorticity profiles and a constant turbulent kinetic- 
energy level. He found that, compared with Schauer & Eustis’ (1963) experimental 
data, his predictions for wall shear stress, wall pressure and mean velocity V, were 
too low, and his predicted Nu-profile along the plate had an incorrect minimum 
appearing at the stagnation point. He attributed the faults t o  both an inaccurate 
turbulent viscosity law and his near-wall boundary conditions. Other workers, 
including Russell & Hatton (1972), Bower & Kotansky (1976) and Bower et al. (1977), 
repeated aspects of Wolfshtein’s work employing similar boundary conditions. Van 
Heiningen et al. (1977) carried out some ‘preliminary ’ numerical predictions with the 
standard k-6 model, solving the stream-function-vorticity equations at Rej = 22 750 
and h / b  = 8. They found their stagnation Nusselt-number prediction to be too low 
compared with Gardon & Akfirat’s (1966) measurements, attributing the failure to 
their ‘wall functions’ (see (13) and (14)). 

Recently Agarwal & Bower (1982), in their study of VTOL aircraft design, included 
normal jet impingement in their calculations, employing the low-Reynolds-number 
k-e turbulence model of Jones & Launder (1973), i.e. allowing them to dispense with 
wall functions. They also confined their solution field to the impingement region, using 
empirical inlet profiles, and reported excellent agreement for their ground-plane 
static-pressure results with Schauer & Eustis’ (1963) and Gardon & Akfirat’s (1965) 
data. Their remaining calculations included both incompressible and compressible flow 
cases a t  h/b = 2 with the undersurface of the fuselage as upper boundary condition. 
They reported good agreement with their static-pressure and mean-velocity measure- 
ments, but predicted a large overshoot in turbulent kinetic energy along the jet 
centreline near the ground plane compared with their measurements. 

4. Methodology 
4.1. The equations solved 

For steady laminar isothermal plane flow of an incompressible Newtonian fluid of 
density p and viscosity p, the continuity and Navier-Stokes equations become 

au. 

au. ap a au, au. p u . 2 = - - + -  p -+- 
3 axj 

G=”- 
ax, axj{ (a, a,,)] 

where i , j  = 1, 2 and summation over repeated indices applies; U, = instantaneous 
velocity, p = static pressure. 

For turbulent flow the complete equations are Reynolds-averaged, resulting in 
additional stresses, which, from the turbulent-viscosity law, become 

__ 
where U, -= mean velocity, u, E fluctuating,velocity, k = ~i u,, overbar = ensemble 
average, pt = turbulent viscosity (to be defined by turbulence model), sij = Kronecker 
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delta. Thus the final equations are identical with (1) and (2) except for the 
transformations p+pUeff = p+pt and p + p , + $ p k .  

The stagnation-enthalpy (14) equation, required for the impinging-jet case, includes 
a turbulent-flux term -a(puj p) /az j ,  which, to be consistent with the turbulent- 
viscosity assumption. is modelled assuming a turbulent thermal diffusivity : 

where = SFocPdT+2Uj Uj+ k ,  I' = temperature, c p  = specific heat, A' E fluctu- 
ating stagnation enthalpy = H' ++uj uj, A, 3 turbulent thermal diffusivity = vt/gt ,  
vt = pJp, rt =_ turbulent Prandtl number = 0.9 for near-wall flows. Therefore the 
stagnation-enthalpy equation can be written as 

where u1 E Prandtl number = cppc/k, (if i t  is of order unity the last term on the 
right-hand side becomes negligible). 

The turbulent viscosity is assumed to be a function of the turbulent kinetic energy 
k and the turbulent-energy dissipation rate E ,  which are obtained from their own 
transport equations (Jones & Launder 1972) : 

where 

C,, C,,  IT^, rF = constants. 

The €-equation is preferred to the kl-equation employed by Rodi (1972) on the 
evidence of Launder & Spalding (1974). They have shown the difference between the 
equations lies in the diffusion term, which, though unimportant in free shear layers 
where 1 does not vary laterally, becomes important near a wall where I is proportional 
to the distance from the wall. If both equations are reduced for near-wall flow to 
expressions for IT, the Prandtl number for turbulent transport, then only in the case 
of the e-equation is this expression applicable, when standard coefficient values are 
inserted, to  the spread of the different entities ( k l  and E )  a t  locations far from walls. 

If the modelled form of the Reynolds-stress equations (Launder et al. 1975) are 
reduced by assuming the convection and diffusion terms to  be proportional to those 
of the k-equation multiplied by the ratio ui u j / k ,  in accordance with a suggestion of 
Rodi (1972), they can be transformed to become 

__ 

where a and C,, are constants associated with the mean-strain and turbulence 
interaction effects of the pressure-strain correlation respectively, and are set a t  0.6 
(Crow 1968) and 2.486 as recommended by Hanjalic & Launder (1972). The term in 
the square brackets reduces to  0.09 when the production-to-dissipation P/e ratio is 
set a t  unity, and corresponds closely to the optimized empirical function for the 
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turbulent viscosity constant employed by Rodi (1972) in his predictions of free 
turbulent boundary layers. Hence (6)-(8) will be termed Rodi’s (1972) algebraic stress 
model. In deriving (8), further details of which are given by Rodi (1980), the surface 
integral (and hence wall effects) in the pressure-strain correlation is neglected and 
turbulent stresses are assumed to be influential in thin shear layers only, which places 
some limitations on the application of all two-equation models to such complex flows 
as impinging jets. On the other hand, the stress-redistribution part of the pressure 
strain correlation, found by Gutmark et d ( 1 9 7 8 )  to be important in the stagnation 
region of an impinging jet, is included. An expression for the turbulent viscosity can 
now be deduced from (8), which, if PIE = 1 ,  reduces to 

pt = CDPk2/S,  (9) 

where CD = 0.09 for the standard k-e model. 
The remaining constants appearing in (6) and (7) are subject to the constraints 

1.83 < C, < 2.0, (10) 

from experimental data for the decay of turbulence behind a grid in the absence of 
mean velocity gradients, and 

0.533 

a E  

< c, < 2.0--, 
0.533 

1.83-- 

from near-wall turbulence data. With the additional constraint that both the k and 
E Prandtl numbers are the order of unity, Launder et al. (1972) optimized the five 
constants for the standard k-e model for a wide range of free shear flows to  those values 
given in table 3. 

If the surface integral appearing in the modelled pressure-strain correlation term 
of the Reynolds-stress equations is included before their reduction to algebraic form 
(in order to obtain the measured damping of the level of fluctuating velocity normal 
to a surface and the enhancement of the level parallel to the main flow), a 
turbulent-viscosity expression results of the form (Ljuboja & Rodi 1979) 

where 

FD Gl G!2 P k 2  
Pt = > 

2( 1 - a) (C,, - 1 + aP/e) 
FD = 

3C,, (C,, - i + P/E) 
’ 

1+1.5ccC;f/(l-a) 
1 + 1 .5c;j/c,, ’ 

G, = 

1 -2aCL Pf/(C,,e-e+aP) 
G, = 

1 + 2C;f/(Cs, - 1 + P/E) ’ 

S,, = distance from wall, 

C,, = 2.2, a = 0.55 (Launder 1975), 

C; = 0.75, Ci = 0.45 
- _  

(which were adjusted to achieve the correct ratios of u2, v 2  and 7 3  to E close to the 
wall), 

C, = 4.4 so that f becomes unity next to the wall. 
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CD O k  c2 0, c, 
0.09 1 .o 1.92 1.3 1.43 

TABLE 3. Standard k-E model constants 

In practice, when PI& = 1, FD reduces to 0.1085, which is rectified by replacing F D  

with the constant C,. Thus (9), (8) and (12), together with table 3, represent three 
separate turbulence models of increasing complexity. Their validity in representing 
the mean-flow and turbulence characteristics of free and impinging jets will be tested 
here. 

To overcome the requirement of fine grids adjacent to walls in turbulent flow, ‘wall 
functions ’ are introduced to calculate quantities at  grid points that are placed well 
outside the viscous sublayer. They take the form of expressions for the wall shear 
stress from which average production and dissipation of k across the near-wall ‘cell’ 
may be estimated. For the impinging-jet case, Launder & Spalding’s (1974) modified 
log-law wall function is employed, which plausibly accounts for the diffusion of 
turbulence energy from the free stream and is given by 

where V = mean velocity parallel to the wall at  awl; K = 0.4 and E = 9.0 from 
universal log-law velocity profile. 

Finally the rate of heat transport from a wall, q,, is calculated from 7, using the 
classical non-dimensionalized temperature profile : 

where 

from the analysis of experimental data by Jayatilleke (1969); A = a constant 
depending on the roughness of the wall ( A  = 26.0 for a smooth wall). 

4.2. Method of solution 

The finite-volume solution procedure is described in detail by Pun & Spalding (1976). 
Briefly, the solution domain is discretized into a non-uniform rectangular mesh. The 
finite-difference equations for each variable are derived by approximate integration 
of the parent differential equations over each control ‘volume’, ensuring the 
preservation of their conservation properties. The variable ‘nodes ’ are arranged so 
that the velocities are located midway between the pressures which drive them (see 
figure 1).  The resultant finite-difference equations connect each nodal value of 
variable # to its four nearest neighbours by linear algebraic relations. Thus for 
node P 

A P f b  = A,A+S$ ,P>  (15) 
i 

where A = coefficient representing convection and diffusion, S$, = integrated 
source, A ,  = Zi Ai, Ci EE summation over node P s  four neighbours. They are solved 
iteratively along successive lines in the main flow direction (if one exists) using the 
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FIGURE 1. A staggered rectangular mesh illustrating the $ (i.e. p, k 
and E),  U and V control 'volumes'. 

Thomas tridiagonal-matrix algorithm. A pressure-perturbation equation can be 
derived, from a combination of the discretized continuity and momentum equations, 
in the general form of (15). I ts  solution yields updated pressures which drive the 
velocities in the direction of satisfying continuity. 

The non-uniform rectangular meshes allow for grid refinement where gradients are 
large. A hybrid differencing scheme combining the advantages of both upwind and 
central differencing is employed to  ensure stability a t  all PBclet numbers (i.e. 
pU, i3xi/p) and to reduce the effects of numerical diffusion, which are greatest when 
streamlines travel at 45" with respect to the coordinate directions. 

5. Results and discussion of numerical predictions 
5.1. Laminar f ree  j e t  

An isothermal two-dimensional submerged laminar free jet is studied. For the test 
case, air at 15 "C (p  = 1.226 kg/m3 and p = 1.75 x low5 N s/mz) is issuing from a 
nozzle (b  = 6 mm) a t  50 mm/s and Rej = 20. A solution field of length L = 102.5b and 
width W = 53.33 is covered by a 34 x 30 node mesh to achieve a grid-independent 
solution. Boundary conditions are 

U = V = 0 

au 
- = V = 0 
aY 

on the top wall, 

on the axis of symmetry, 

= 0 on the free boundary, 
au av 
ay aY 
_-  -- 

av 
ax U = U,, f (;), - = 0 downstream, 
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FIGURE 2. Streamlines (units of cmz/s) representing half the laminar free-jet flow field. 
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FIGURE 3. Comparison between the computational (0, 0 )  and the analytical (-) solution for 
the laminar free jet: (a) axial distribution of centreline velocity U,, and entrainment velocity VE; 
( b )  U and V similarity profiles; (c) spreading rate: &/Qin and S / b  versus x / b ;  ( d )  momentum and 
pressure fluxes. 

Plenum chamber 

FIGURE 4. The turbulent free jet. 
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where f is defined by extrapolation from the previous grid line assuming similarity, 
i.e. UIU,, versus y/S, U,, cc x 2 ,  8 cc xi. The calculated streamlines for the flow are 
shown in figure 2. 

Figures 3 (a-d)  demonstrate the accuracy of the solution procedure by comparing 
the predictions with the analytical boundary-layer solution of Schlichting ( 1933) and 
Bickley (1939).  The latter is obtained by selecting a suitable value for the lateral 
momentum M ,  and the position of the origin, i.e. a correction to the distance x from 
the nozzle, to  allow for comparison with solutions for a finite inlet condition, i.e. b + 0 
and U + co. From figure 3 ( d )  M ,  approaches a constant value of 0.594Mi,, and from 
figure 3 (a) the origin xo is at 9.6b, corresponding to matching values of U,, a t  93.3b. 
Hence the analytical solution is calculated from 

PPX 

V = 0.5503 (&>: [2<(1- tanh2 6 )  - tanh <I, 
p2x2 

Q = 3 . 3 0 2 p ( ~ ) : ,  MX P X  

S = 3.203 (-y P2 xi, 
P M X  

+m 
where M ,  = p U2 dy and Q = mass flow rate 

Agreement between the two solutions is very good, considering their differing inlet 
conditions. Figure 3 ( d )  places this difference in perspective. Whereas the boundary- 
layer solution assumes an ambient pressure field throughout the flow field, and hence 
constant momentum M,, the numerical solution of a 'real' problem indicates a 
small negative pressure field existing directly beneath the nozzle, resulting in en- 
hanced entrainment (see figure 2 )  and a sharp fall in the momentum until i t  levels 
out at about 25b before rising slightly, accompanied by a positive pressure field 
(P, = S'zpdy). Both level off after 80b, where similarity is established conclusively 
and identical U- and V-profiles result, as shown in figure 3 (b) .  

The overall rate of spread ASlAx a t  this Rej is shown in figure 3 ( c )  to be 0.103. 
Therefore the solution represents a good test case to illustrate any numerical diffusion 
errors that  might distort the results of the turbulent free-jet solution, which will have 
a similar spreading rate and hence average angular streamline variation with 
coordinate axes. Figure 3 demonstrates that these are minor. To confirm this result, 
grid-independence tests for both turbulent flows are also carried out. 

5.2.  Turbulent free jet 

An isothermal two-dimensional submerged turbulent free jet is studied (see figure 4 ) .  
For the test case, air a t  15 "C is issuing from a nozzle (b  = 13 mm) a t  35 m/s, 0.2 % 
turbulence intensity and Rej = 3 x lo4. A solution field of length L = 44b and width 
W = 22 b is covered by a 40 x 36 node mesh to achieve a 'grid-independent ' solution, 
the variation in centreline mean and turbulent quantities in moving from a 40 x 36 
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FIGURE 5. Streamlines (units of m2/s) representing half the turbulent free-jet flow field. 

mesh to a 502 mesh solution being less than 1 yo and 2 yo respectively. Boundary 
conditions are 

U = V = k = c = 0 on the top wall, 

on the axis of symmetry, 
au ak  at. 
aY aY ay 

y = - = - = - = o  

- = U = k = c = 0 on the free boundary, 
av 
aY 

where f and g are defined by extrapolation from the previous grid line, assuming 
similarity, i.e. U /  U,, versus y/6, V/ U,, versus y/6, U,, a x-4, 6 a x. The calculated 
streamlines for the flow are shown in figure 5 .  

Figures 6 (a-1) compare the computational results found by employing the 
standard k-e model (i.e. (9) and table 3) and Rodi's (1972) algebraic stress model 
(i.e. (8)) with the extensive experimental data listed in table 1. Mean-flow results are 
represented by the axial distributions of the centreline velocity (a ) ,  the half-width 
(d )  and the centreline static pressure (h) ,  the U and B velocity components similarity 
profiles ( b )  and ( c ) ,  the static pressure profile (i) and the lateral distribution of the 
four terms in the U-momentum equation normalized by pU&/S ( k ) .  While turbulent 
characteristics are provided by the axial distribution of the centreline turbulent- 
kinetic-energy ( e ) ,  the k 0, shear-stress (9) and a normal-stress, v" (i) similarity 
profiles and the lateral distribution of the four terms of the k-equation normalized 
by pIJ;JCL/S and including the kinetic-energy dissipation-rate profile ( I ) .  As pointed 
out earlier, turbulence measurements in the outer part' of a jet in still air are not 
reliable. Hence turbulence-model performance will be based on comparisons within 
y < 1.66, even though all figures include both computational results and measure- 
ments, when available, as far out as 2.46 for completeness. 
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FIGURE 6. Comparison between the numerical solution employing the k-e model (-) and Rodi’s 
(1972) algebraic stress model (---) and the experimental data of Bradbury (a), Robins (O) ,  
Gutmark & Wygnanski ( O ) ,  Heskestad (m), Miller & Comings (O), Van der Hegge Zijnen (a), 
Antonia et aE. (O), Pate1 (+), Forthmann (I), Mih & Hoopes (m), and Hussain & Clark for low 
Re, (V) and high Rej (V): (a )  axial distribution of U,..; (6) U similarity profile; (c) V similarity 
profile; ( d )  spreading rate: S / b  versus x/b; ( e )  axial distribution of kCL; (fl k similarity profile; 
(9 )  iii similarity profile; (h)  axial distribution of p c L ;  ( i )  static-pressure profile; (i) 3 similarity 
profile; (k) U-momentum balance; ( 1 )  k-equation balance. 

The experimental data for the centreline velocity exhibits a great deal of scatter. 
Even so, agreement between predictions and experiment appears reasonable, con- 
sidering that Heskestad’s (1965)’ Forthmann’s (1934) and Hussain & Clark’s (1977) 
data are all low initially owing to the presence of a smaller potential core (<  6b), 
evident in their k,, distributions also, caused, in the first and third cases a t  any rate, 
by inadequate plenum-chamber design. In addition, Bradbury’s (1965) data is high 
downstream owing to the effect of his external stream, and Robins’ (1973) data, which 
indicate a long potential core, have been indirectly calculated from his turbulence 
measurements. However, Robins’ did report a d( V;/V,,)/d(x/b) value of 0.18, which 
compares favourably with approximately 0.173 for Rodi’s model predictions as 
opposed to 0.16 for the standard k-e model’s results. In  addition, the former model’s 
predictions agree better with Gutmark & Wygnanski’s (1976) data. 

The U and V similarity-profile predictions correspond to a downstream position 
of 39.45 b ,  which is consistent with Robins’ criteria for self-preservation : 
UcLx/v > 4 x lo5. They agree well with the experimental data, of which only three 
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sets are shown for clarity, and Rodi’s, model predictions appear almost exact. 
Differing inlet and boundary conditions are again reflected in the experimental data 
for the half-width. Bradbury’s data indicate a spreading rate d6/dx that is much lower 
than predictions due to the external stream, and Hussain & Clark’s data is affected 
by the small potential core but implies a spreading rate of 0.1, similar to  predictions, 
i.e. 0.1 from Rodi’s model and 0.097 from the standard k-E model. This result is 
supported by the data of Miller & Comings (1957) (0.1) and the findings of Newman 
(1967) and others as mentioned earlier (see $2.1). However, i t  is in marked contrast 
with the results of Rodi (1972) of 0.108 and 0.114 from his standard and modified 
k-kl models. The energy-dissipation equation, the more simplified algebraic expression 
for C, and the inclusion of the normal-stress 2-3 terms in the U-momentum 
equation perform better in this case. 

The scatter exhibited by the k,, data makes it difficult to assess the performance 
of the two models. This is a result of the differing inlet conditions, illustrated by the 
scatter in Hussain & Clark’s data sets, and the fact that all but Robins’ and Gutmark 
& Wygnanski’s data are inferred from &/U& and 3 profile measurements. Yet 
the two accurate sets of measurements represent good bounding values for the figure. 
Considering that similarity has not quite been reached, i.e. constant kCL/UcL, in the 
case of the predictions, it is reasonable to assume that Rodi’s model predictions and 
the bulk of the cxperimental data will approach each other further downstream 
(where the inferred data are more reliable) and thus they are preferred. Indeed, this 
is further borne out by the k and UV similarity profiles, where Rodi’s model predictions 
appear slightly lower than the fully developed profiles of Bradbury (which is a t  70b 
downstream) and Gutmark & Wygnanski (at 120b), whose data are considered the 
more reliable, Robins having pointed out the inconsistency of his W-profile with his 
mean-velocity measurements beyond 0.58. Both profiles have maximum values a t  
approximately 0.756 from the axis, where the velocity gradient aU/ay and hence UV 
and the production term P are greatest. 

Agreement between predictions and experiment for centreline static pressure p,, 
is poor, particularly downstream. However, this is not the case, once Robins’ data 
is excluded, for the region beyond 0.88 of the static-pressure profile. Indeed, it is the 
subsequent rise in p ,  close to the centreline which results in the poor p,, agreement. 
This discrepancy between predictions and experiment close to the centreline may 
be attributed to the fact that  the predicted curves are obtained by subtracting $pk 
rather than the more correct $(2+2) from the pressure values obtained from the 
solution of the momentum equations; i.e. isotropic flow is assumed, which is only true 
when the turbulence is reduced to the smallest scales where dissipation by molecular 
viscous action occurs (Kolmogorov 1942). Comparison of the 3 measurements of 
Bradbury and the predicted normal-stress profile, i.e. ?$, bears this out, the predicted 
profile being too low close to the centreline. Indeed a comparison of the two plots 
of normal stress and static pressure emphasizes this further, and verifies the reduction 
of the V-momentum equation for fully developed flow by boundary-layer approxi- 
mations to 

However, as 3 is not explicitly required in either the momentum (where p rather than 
p ,  is included) or the turbulence-model equations, the discrepancy evident in the p ,  
and 3 comparisons is unimportant with regard to overall turbulence-model 
performance. 
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FIGURE 7 .  Effective-viscosity contours from employing : (a )  the standard k-e model 
(0.003-0.03 N s/m2); ( b )  Rodi’s (1972) algebraic curve stress model (0.0034.042 N s/mz)). 

In  the lateral distribution of the four terms of the U-momentum equation, a$k/ax 
has been subtracted from the predicted C!p/ax term and added to the normal-stress 
term to be consistent with Robins’ measurements. Agreement between predictions 
and experiment is good within 1.6s. The boundary-layer nature of the flow is clearly 
indicated by the dominating acceleration and turbulent shear-stress terms, with the 
former changing sign as V and hence VaU/ay does so, and the zero values corre- 
sponding to the maximum in the m-curve. 

Finally a comparison of the predicted lateral distributions of the four terms of the 
k-equation with Robins’ and Bradbury’s data indicates good agreement, with a clear 
preference for results from Rodi’s algebraic stress model. However, i t  must be pointed 
out that, in the case of the experimental data shown, the diffusion term is calculated 
from a balance of the four terms and then scaled, along with the dissipation term, 
to achieve zero overall diffusion. This is a result of the difficulty in obtaining accurate 
dissipation-rate measurements and is evident from Heskestad’s and Gutmark & 
Wygnanski’s data, which is unscaled and not shown for clarity but indicates much 
lower (by 30%) dissipation and hence other terms. The distributions do show the 
importance of the advection terms over the initial jet half-width and hence the 
inadequacy of ‘ zero-equation ’ turbulence models where production and dissipation 
are assumed to  balance. 

Only in the case of the effective viscosity ,u +pt do the variable field contours vary 
in shape in going from the standard k-E model to Rodi’s algebraic stress model (see 
figures 7 (a ,  b )  : the fluctuations in the outer boundary are caused by the exaggeration, 
as ,ut oc k2/e, of much smaller ones in the k- and e-values a t  the edge of the jet as they 
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fall to zero). The effect of the rising value of C, for Rodi’s model is dramatic (see 
(8) as PIE < 1) .  The contours depart from the familiar saddle shape and show a sharp 
rise next to the centreline. Since this alteration to pef f  has little effect on the shear- 
and normal-stress terms of the U-momentum equation (see figure 6 j )  or the diffusion 
term of the k-equation (see figure 6 k ) ,  i t  must therefore affect the gradients of u, k 
and E .  I n  fact, it reduces them close to the centreline, and results, as we have shown, 
in improved predictions, especially in the case of the U- and V-profiles. Thus the 
unorthodox shape of the peff contours for the ‘experimentally verified ’ algebraic 
stress model point, in the authors’ opinion, to the shortcomings of the turbulent- 
viscosity law, i.e. (3), and the need for its replacement by adequate stress-equation 
alternatives. 

Returning to the experimental verification, it would appear that  overall the 
algebraic stress model of Rodi (1972) provides detailed consistent predictions well 
within the range of the experimental error reported. The only unsatisfactory 
comparison involves the dissipation-rate profile, which highlights the discrepancies 
in existing experimental data. Methods of improving these measurements of what is 
essentially the turbulence lengthscale must be found before further refinement of the 
equation can be undertaken, For it is this equation which most workers regard as 
the weakest link in both the two-equation and stress-equation turbulence models. 

5.3. Turbulent impinging j e t  
An isothermal two-dimensional submerged turbulent free jet impinging on a heated 
flat plate placed at right angles to the centreline is studied for differing values of Rej 
and h / b .  A partially or fully developed free jet, depending on h/b ,  is employed as the 
inlet condition a t  approximately 0.55h (corresponding to 12.2 times the local jet 
half-width 6)  above the plate, with all the quantities specified from the solution of 
the free-jet problem. The solution field, which extends to approximately 0.55h from 
the centreline to allow the wall jet to develop sufficiently for a similarity velocity-profile 
side-boundary condition to be applied, is illustrated in figure 8. It is covered by a 
35 x 34 node mesh to achieve ‘grid independent’ solutions, the variation in centreline 
and maximum wall-jet quantities in moving from the 35 x 34 mesh to  a 4Ei2 mesh 
solution for a typical test case being less than 3 yo and 2 yo respectively. Boundary 
conditions are 

U = V = k = E = A = 0 on the upper free boundary, 

outside the free-jet solution field, 

au aA ak a€ 
aY aY aY aY 

Ti = - = - = - = - = 0 on the axis of symmetry, 

a€ - 
ax 
a u  ak a€ aA 
aY aY aY aY 
- = o  - - ( V < O ) ,  - - - = O’ 1 on the side boundary, 
av  
aY 

U = V = k = - = 0, H = H ,  a t  T, = 30 “C on the heated plate, 

- _ _  - - 

where f is defined by extrapolation from the previous grid line, assuming similarity, 
i.e. V/V ,  versus x1/6,, - V, cc y-?, 6, cc y (xl = distance above the plate = h-x, 
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FIQURE 8. The impinging-jet solution field. 

0’ 

FIGURE 9. Streamlines (units of mz/s) representing half the turbulent impinging-jet flow field. 

6, = z1 a t  V = $V,). The wall functions are imposed on the solution by setting the 
coefficient A in (15) referring to  the wall node to  zero in the approximate momentum 
andstagnation-enthalpyequationsandincluding the terms - r,  a andq, arespectively 
on the right-hand side (a = cell-face area), with T, and pw calculated from (13) and 
(14). The production term of the k-equation is replaced by ~,laV/azl, and 6 is 
calculated directly from k assuming a lengthscale of 0.46,,. 

The calculated streamlines for the flow where Rej = 3 x lo4, b = 13 mm and 
h / b  = 20 are shown in figure 9. They are computed by employing the standard k-e 
model. The reasons for this turbulence-model choice are illustrated in figure 10, which 
presents for the three models discussed in 34.1 the axial distribution of U,, and 
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FIGURE 10. Turbulence-model comparison (-, k-s model; ---, Rodi's model; 0, Ljuboja &, 
Rodi's model) for the impinging-jet case: (a) axial distribution of U,, and kCL; ( b )  distribution of 
T,  and V, along the plate; (c) Nusselt-number profile along the plate; (d )  centreline values C,. 

k,, (a ) ,  the variation of T, and V, along the plate ( b ) ,  the local Nusselt-number 
profile ( c )  and the axial variation of G ,  along the centreline (d) .  The main effect of 
the algebraic stress models is to lower the peak in k,, near the stagnation point. This, 
along with only small variations in the mean-flow variables near the stagnation point 
(as they are strongly dominated by non-viscous phenomena), combine to lower 
Nusselt-number levels near the stagnation point and thereby produce Nu-profiles that  
differ markedly from experiment (see figure 13). The cause of these differences 
between the standard and algebraic stress models is the reduction in C, to 
approximately 0.04 near the stagnation point. This is due in Rodi's (1972) model to 
a P/e ratio rising to greater than 2 near the stagnation point, and in Ljuboja & Rodi's 
(1979) model to a rise in the factor f in (12) from zero to unity as the wall is 
approached. 

The results for the two algebraic stress models are not inconsistent with expect- 
ations. For the former has been applied successfully to  flows where P/s  < 1 only 
(viz high C, values, where P / c  < 1 ,  in the free-jet solution of figure lOd) ,  and the 
latter has been applied to wall jets only where P/e is close to unity. Thus, owing to 
the success of the standard k-c model, further modifications such as streamline 
curvature corrections to either the turbulent-stress approximations (3) or the 
€-equation have neither been described nor implemented. I n  addition, discounting 
its effect on computational resources, extension of the work to Reynolds-stress 
modelling, in order to achieve a measure of universality for the two turbulent flows 
considered, would appear fruitless from earlier work on the free jet by Launder 
& Morse (1977) among others. However, i t  would have the advantage of predicting 
correctly the experimentally observed differing positions of zero shear stress and 
maximum velocity in the wall-jet profiles (see Alcaraz, Charnay & Mathieu 1977). 
This feature is discussed in detail by Mathieu (1971). It cannot be simulated correctly 
by a turbulent-viscosity model, which will always predict the velocity maximum to 
lie too close to the wall. The discrepancy is considered minor in this impinging flow 
though, and of no practical importance. 

Figures 11 (a-i) compare the predictions for a wide range of flow variables, em- 
ploying the standard k-€ model, for three test cases: Rej = 4.2 x lo4, h / b  = 15; 
Rej = 3.0 x lo4, h / b  = 20;  and Rej = 2.2 x lo4, h / b  = 43; with the available experi- 
mental data listed in table 2. The flow variables include distributions of U,, ( a ) ,  
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FIGURE 11. Comparison between the numerical solution for the three test cases (Rej = 4.2 x lo4, 
h/b = 15 (---); 3 x lo4, 20 (-); 2.2 x lo4, 43 (---)) and the experimental data of Beltaos & 
Rajaratnam a t  h/b  = 67.5, Re, = 5650 (A); 66.14, 7100 (A); 66.14, 5680 (v); 43.64, 9400 (v); 
43.64, 7100(Q);43.64,5270(();30.96,6970(D); 14.05,5270(b);GutmarketaZ. at Re, = 3 x  LO4, 
h/b  = 100 (a); Russell & Hatton a t  Re, = 1.25 x lo5, h/b = 31 (0); Schauer & Eustis a t  
Re, = 4.3 x lo4, h/b = 40 (0) ;  Baines & Keffer at  Re, = 7000, h/b = 48 (8) ;  Kumada & Mabuchi 
at Re, = 7000-28 000, h/b = 8-40. ( + ) ; Gardon & Akfirat at Re, = 1.1 x lo*, h/b = 8 ( 0) ; 1.1 x lo4, 
16 (H) ; 1.1 x lo4, 32 (0 )  ; Tailland & Mathieu plane wall-jet data (a) : (a )  axial distribution of UcL;  
(b)  axial distribution of kcL; (c) axial distribution of pcL; (d )  wall static-pressure profile; ( e )  wall 
stress distribution; (f, variation of V, with y / h ;  (9)  wall jet-velocity profile; (h)  wall jet k-profile; 
(i) wall jet =-profile. 

k,, ( b ) ,  V, cf) and r,, i.e. p q  ( e ) ,  which are normalized, e.g. by U,, for U,,, and 
factorized, e.g. by (h/b): for UcL, in order to compare solutions from differing inlet 
conditions and h/b  ratios respectively. I n  addition, centreline ( e )  and wall (d )  
static-pressure distributions and wall-jet profiles of V ( g ) ,  k ( h ) ,  and UV ( i )  are 
presented. Owing to the limitations of the data involved, none of the three test cases 
correspond to the more detailed experiments, e . g .  Beltaos & Rajaratnam's (1973) Rej 
values were considered too low, the h/b ratio of Gutmark et at. was too high, etc. The 
variation in Rej over the three cases is selected to facilitate the comparison of 
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Nusselt-number dependence on Rej with Gardon & Akfirat’s (1965, 1966) data. The 
hydrodynamic solution is independent of Rei. Hence any variation in i t  over the three 
test cases is a consequence solely of the different h/b ratios. 

Excluding Russell & Hatton’s (1972) data, which can be accounted for by possible 
origin shifts and three-dimensional effects, agreement between predictions and 
experiment for U,, is good. The minor differences between the three test-case 
distributions and between them and the experimental data are due to ‘non-similarity ’ 
effects for the lower-h/b cases where undeveloped free jets enter the impingement 
region. These are highlighted by their L,, distributions where the level of k in the 
free-jet region reflects the relative developed state of the jet, e.g., for test case 2, 
x = 0.45h = 6.75b downstream from the nozzle; and for the measurements of 
Gutmark et al. (1978), x = 0.4h = 40b. I n  contrast with the experimental data, all 
three test-case predictions indicate a sharp rise in kCL beyond 0.8 h downstream, which 
results in the enhanced heat-transfer characteristics near the stagnation point. The 
relative rise in k,, decreases with increasing h/b ratio and its position, i.e. of kCLmax, 
moves away from the stagnation point. Both effects could result in agreement with 
the data of Gutmark et al. for h/b = 100, where’ there appears to be a levelling off 
of the fall in k,, at x = 0.82h. Hence considering Russell & Hatton’s data to be 
spurious, and the good agreement with experiment of the mean-flow variables and 
heat-transfer characteristics, i t  must be concluded that no firm evidence exists that 
contradicts the predictions, a t  least a t  levels of h/b greater than 8, Agarwal & Bower 
(1982) having reported a large overshoot in their predictions of k,, compared with 
their measurements for their lift jet configuration at h/b = 2. 

The agreement between predictions and experiment for both the centreline and wall 
static-pressure measurements is less ambiguous. I n  the case of p,, the two high-h/b 
cases correctly indicate the below-ambient pressure in the free-jet region. The 
predictions show no effect of the wall on the free jet until after 0.7h downstream, 
in agreement with both the U,, and k,, results and experimental observation. This 
confirms the use of the free-jet inlet conditions a t  0.45h. The discontinuity in the 
predicted distributions a t  0.9h may be the result of solving for p rather than p,, 
whereas the slight rise in the predicted wall profiles in the outer region, particularly 
in the case of the highest-h/b case, is due to the approximate side-boundary 
conditions. 

The wall shear-stress predictions are satisfactory close to the stagnation point, 
while in the outer region they could be improved by employing Ljuboja & Rodi’s 
(1979) model (see figure l o b ) ,  in agreement with their results for plane wall jets. 
However, considering that Beltaos & Rajaratnam estimated an uncertainty level of 
+ 6 %  in their measurements, the predictions from the standard model appear 
adequate, once Baines & Keffer’s (1980) data are discarded. Mean-velocity results in 
the near-wall flow, as represented by the distribution of V, and the wall-jet velocity 
profile in the outer region, also prove to be in good agreement with the experimental 
data. The wall-jet profiles of k and UU compared with Tailland & Mathieu’s (1967) 
experimental data for plane wall jets also indicate adequate agreement, considering 
the different upstream conditions of the jets. The position of the maximum values 
in both profiles lie close to each other and to  that of the maximum mean-velocity 
gradient avlax:,. The discontinuity in the predicted Zi-profiles is a result of the 
coarseness of the grid (owing to the use of wall functions), and corresponds to zero 
a V/aq (with small positive - aU,/ay). 

Figure 12 compares the predictions of stagnation Nusselt number Nu, for 26 
separate test-case solutions with the available experimental data listed in table 2, 
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FIGURE 12. Comparison of stagnation-Nusselt-number predictions at  Rej = 6000 (-m-); 11 000 
(-A-); 14000 (-v-); 22000 (-*-); 30000 (-+-); 50000 (-4-) with the experimental data of 
Gardon & Akfirat at Rej = 5500 (0) ; 11 000 (A), 22 000 (0) ; Hardisty at Rej = 7000 (0)  and 10000 
( 0 ) ;  Van Heiningen et al. at  Rej = 13700 (7); 23300 ( 0 ) ;  49100 (a). 

which mainly consists of Gardon & Akfirat's measurements. Converged solutions are 
difficult to achieve for low-hlb cases, i.e. < 8. Accordingly, the confidence in these 
Nu, values is reduced, particularly as the jet is not fully turbulent on impingement. 
However, the correct peak at hlb = 8, where k,, is a maximum in a free jet (see 
figures 6 a ,  e ) ,  is clearly evident in the Rej = 22000 and 30000 cases. Indeed, 
agreement between predictions and Gardon & Akfirat's data is excellent in this 
midrange of Rej (viz the 14000 and 22000 cases), particularly as the 30000 case 
predictions are in agreement with their overall empirical correlation given by 

where 14 < h/b < 60, 2000 < Rej < 50000. However, agreement is poor for 
Rej = 50000, where Nu, is predicted 30 % higher than that given by (18), and for the 
low Rej cases considered, though Hardisty's (1977) measurements a t  Rei = 7000 are 
in closer agreement. The computational results imply a stronger dependence of Nu, 
on Rej than that of (18), of approximately Reg.s. However, considerably more 
computational work is required to confirm this. 

The scatter in Gardon & Akfirat's data a t  low hlb ratios, shown in figure 12, is due 
to three separate levels of inlet turbulence intensity being present, corresponding to 
the three nozzle sizes employed. The higher inlet turbulence intensity increases Nu, 
below h/b = 8, as it reduces the potential-core length, and the secondary peaks which 
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FIQURE 13. Comparison of Nusselt-number wall-profile predictions at Rej = 50000, h / b  = 30 
(-q-) ; 42000,15 (-m-) ; 30000,20 (-+) ; 22000,43 (-@-) ; 11 000,30 (-A-) with the experimental 
data of Gardon & Akfirat at Rej = 50000 (0); 22000 (0); 11000 (A) and h / b  > 8; Hardisty at 
Rej = 7000, h/b  = 16 (0). 

appear in the experimental lateral Nu-profile are correspondingly reduced since they 
result from a laminar-turbulent transition. These observations agree well with the 
free-jet k,, predictions and the results of tests undertaken to determine the effect 
of inlet turbulence level on the free jet, which indicated higher levels of kcL up to 
x < 12b with little effect beyond this point. Owing to low-Reynolds-number 
turbulence-modelling difficulties and convergence problems caused by the limitations 
of the line-by-line solution procedure, these effects are not fully investigated for 
impinging jet flows. 

Figure 13 compares the local Nu wall-profile results for five test cases with Gardon 
& Akfirat’s and Hardisty’s measurements. The dependence of profile shape on Rej 
obtained by Gardon & Akfirat is not evident in the predicted profiles. A higher profile 
is found for the lowest-Rej case, but this appears to be the fault of too low a Nu,, 
as is evident from figure 12, being identical to a lower Rej case at the same h / b  ratio. 
The predicted profiles are in good agreement with Gardon & Akfirat’s higher-Rej 
measurements. Considering the Rej independence of all flow properties, including 7, 
and V,, the Nu-predictions appear to be consistent. Therefore further experimental 
evidence is required before the validity of the heat-flux wall function (14)  can be 
fully assessed. 

Overall the predictions have proved satisfactory when compared with the limited 
experimental data available. In the impingement region the flow is strongly dominated 
by non-viscous phenomena, and hence the agreement in the case of axial velocity and 
static pressure is not surprising, being almost independent of the turbulence model 
employed (see U,,/U,, in figure 10a). However, the success of the standard lc-E model 
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in predicting the stagnation Nusselt number, the Nu-profile and the wall-jet k- and 
uv-profiles must not be underestimated, since it represents a significant modelling 
achievement when viewed in the light of previous work. 

- 

6. Conclusions 
The computational results have clearly demonstrated the suitability of both the 

numerical method and the turbulence models selected in the prediction of free- and 
impinging-jet flows. Both the laminar free-jet solution and the grid-independence 
tests for both turbulent-flow solutions have illustrated the accuracy of the numerical 
procedure in predicting jet flows with reasonably sized meshes (< 402 nodes). 
Agreement between predictions and the available experimental data in the literature 
for the turbulent-flow cases is adequate in almost all cases, with minor differences 
being satisfactorily accounted for by the correct interpretation of both the predictions 
and the measurements with respect to inlet and boundary conditions. 

The improvement in the prediction of both mean- and turbulent-flow quantities 
for a developing plane free jet on employing Rodi’s (1972) algebraic stress model in 
place of the standard k-s model has been clearly demonstrated. The spreading rate 
d&/dz of the jet has been shown to be a constant and equal to 0.1, in agreement with 
the bulk of the experimental data. I n  addition the difficulties associated with 
interpreting both static pressure and turbulence-energy dissipation-rate measure- 
ments have been highlighted. 

The limitatons of modified k-s turbulence models have been illustrated by the 
Nusselt-number predictions, satisfactory results being obtained exclusively by the 
standard model, whose applicability to recirculating flows has once again been 
demonstrated. The lack of universality of any one model illustrates the theoretical 
limitations inherent in the derivation of all two-equation models and emphasizes the 
need for the development of adequate alternative approaches, e.g. Reynolds-stress 
equation modelling, subgridscale modelling, spectral methods. 

The enhanced heat-transfer characteristics near the stagnation point of an 
impinging jet have been verified, and shown to be a direct result of the high turbulence 
kinetic-energy levels present. However, the true level of kCLmax reached is still 
debatable owing to insufficient experimental verification. The resulting local Nusselt- 
number profile along the plate has been shown to be Reynolds-number independent, 
which is contrary to Gardon & Akfirat’s (1965,1966) measurements, but is consistent 
with the hydrodynamic predictions. Finally, the resulting developing wall jet from 
a plane impinging jet flow has been shown to be identical with the standard plane 
wall-jet configuration. 

The authors are indebted to the authorities of University College Dublin and the 
Minister of Education for the support which made this work possible. 
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